Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Radio-frequency interference is a growing concern as wireless technology advances, with potentially life-threatening consequences like interference between radar altimeters and 5 G cellular networks. Mobile transceivers mix signals with varying ratios over time, posing challenges for conventional digital signal processing (DSP) due to its high latency. These challenges will worsen as future wireless technologies adopt higher carrier frequencies and data rates. However, conventional DSPs, already on the brink of their clock frequency limit, are expected to offer only marginal speed advancements. This paper introduces a photonic processor to address dynamic interference through blind source separation (BSS). Our system-on-chip processor employs a fully integrated photonic signal pathway in the analogue domain, enabling rapid demixing of received mixtures and recovering the signal-of-interest in under 15 picoseconds. This reduction in latency surpasses electronic counterparts by more than three orders of magnitude. To complement the photonic processor, electronic peripherals based on field-programmable gate array (FPGA) assess the effectiveness of demixing and continuously update demixing weights at a rate of up to 305 Hz. This compact setup features precise dithering weight control, impedance-controlled circuit board and optical fibre packaging, suitable for handheld and mobile scenarios. We experimentally demonstrate the processor’s ability to suppress transmission errors and maintain signal-to-noise ratios in two scenarios, radar altimeters and mobile communications. This work pioneers the real-time adaptability of integrated silicon photonics, enabling online learning and weight adjustments, and showcasing practical operational applications for photonic processing.more » « less
- 
            Abstract The expansion of telecommunications incurs increasingly severe crosstalk and interference, and a physical layer cognitive method, called blind source separation (BSS), can effectively address these issues. BSS requires minimal prior knowledge to recover signals from their mixtures, agnostic to the carrier frequency, signal format, and channel conditions. However, previous electronic implementations did not fulfil this versatility due to the inherently narrow bandwidth of radio-frequency (RF) components, the high energy consumption of digital signal processors (DSP), and their shared weaknesses of low scalability. Here, we report a photonic BSS approach that inherits the advantages of optical devices and fully fulfils its “blindness” aspect. Using a microring weight bank integrated on a photonic chip, we demonstrate energy-efficient, wavelength-division multiplexing (WDM) scalable BSS across 19.2 GHz processing bandwidth. Our system also has a high (9-bit) resolution for signal demixing thanks to a recently developed dithering control method, resulting in higher signal-to-interference ratios (SIR) even for ill-conditioned mixtures.more » « less
- 
            Abstract Neuromorphic photonic processors based on resonator weight banks are an emerging candidate technology for enabling modern artificial intelligence (AI) in high speed analog systems. These purpose-built analog devices implement vector multiplications with the physics of resonator devices, offering efficiency, latency, and throughput advantages over equivalent electronic circuits. Along with these advantages, however, often come the difficult challenges of compensation for fabrication variations and environmental disturbances. In this paper, we review sources of variation and disturbances from our experiments, as well as mathematically define quantities that model them. Then, we introduce how the physics of resonators can be exploited to weight and sum multiwavelength signals. Finally, we outline automated design and control methodologies necessary to create practical, manufacturable, and high accuracy/precision resonator weight banks that can withstand operating conditions in the field. This represents a road map for unlocking the potential of resonator weight banks in practical deployment scenarios.more » « less
- 
            Abstract We have more data about wildlife trafficking than ever before, but it remains underutilized for decision-making. Central to effective wildlife trafficking interventions is collection, aggregation, and analysis of data across a range of source, transit, and destination geographies. Many data are geospatial, but these data cannot be effectively accessed or aggregated without appropriate geospatial data standards. Our goal was to create geospatial data standards to help advance efforts to combat wildlife trafficking. We achieved our goal using voluntary, participatory, and engagement-based workshops with diverse and multisectoral stakeholders, online portals, and electronic communication with more than 100 participants on three continents. The standards support data-to-decision efforts in the field, for example indictments of key figures within wildlife trafficking, and disruption of their networks. Geospatial data standards help enable broader utilization of wildlife trafficking data across disciplines and sectors, accelerate aggregation and analysis of data across space and time, advance evidence-based decision making, and reduce wildlife trafficking.more » « less
- 
            Dong, P.; Kani, J.; Xie, C.; Casellas, R.; Cole, C.; Li, M. (Ed.)Neuromorphic photonics creates processors 1000 × faster than electronics while consuming less energy. We will discuss the role of neuromorphic photonics in optical communications, review existing approaches, and outline the required technologies to evolve this field.more » « less
- 
            Dong, P.; Kani, J.; Xie, C.; Casellas, R.; Cole, C.; Li, M. (Ed.)Neuromorphic photonics exploit optical device physics for neuron models, and optical interconnects for distributed, parallel, and analog processing for high-bandwidth, low-latency and low switching energy applications in artificial intelligence and neuromorphic computing.more » « less
- 
            null (Ed.)Artificial intelligence enabled by neural networks has enabled applications in many fields (e.g. medicine, finance, autonomous vehicles). Software implementations of neural networks on conventional computers are limited in speed and energy efficiency. Neuromorphic engineering aims to build processors in which hardware mimic neurons and synapses in brain for distributed and parallel processing. Neuromorphic engineering enabled by silicon photonics can offer subnanosecond latencies, and can extend the domain of artificial intelligence applications to high-performance computing and ultrafast learning. We discuss current progress and challenges on these demonstrations to scale to practical systems for training and inference.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available